

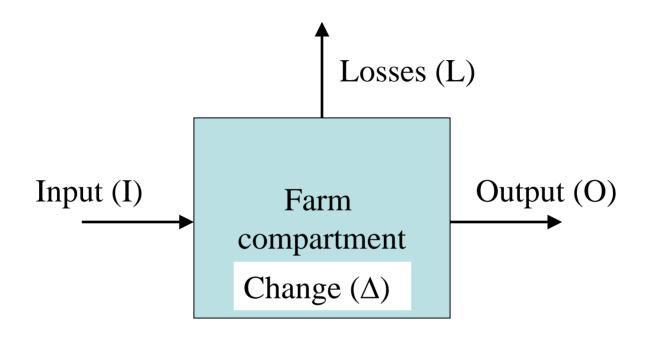
Understanding and predicting nitrogen fluxes at the farm scale

Jørgen E. Olesen, Nicholas J. Hutchings, Jørgen Berntsen, Bjørn M. Petersen & Ib S. Kristensen

Ministry of Food, Agriculture and Fisheries Danish Institute of Agricultural Sciences

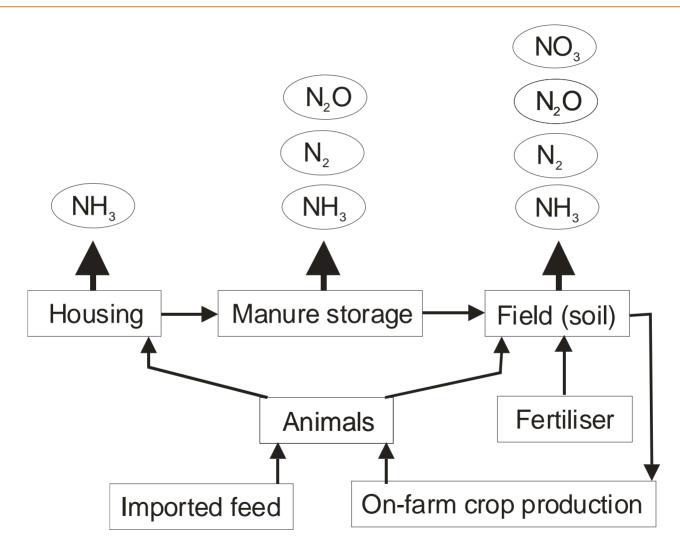
Nitrogen flows in farming systems

Agricultural systems have intensive N flows often leading to large emissions of reactive N to the surrounding environment.


The N fluxes and the effect of management on fluxes differ considerably between farm types (e.g. arable farm, pig farm, cattle farms).

Legislation is increasingly focusing on reducing emissions of several of the reactive N species simultaneously. Such reduction require farm management to be targeted at reducing emissions throughout the chain of N flows at farm scale.

Ministry of Food, Agriculture and Fisheries Danish Institute of Agricultural Sciences


Surplus: $S = I - O = \Delta + L$

Efficiency: O/I

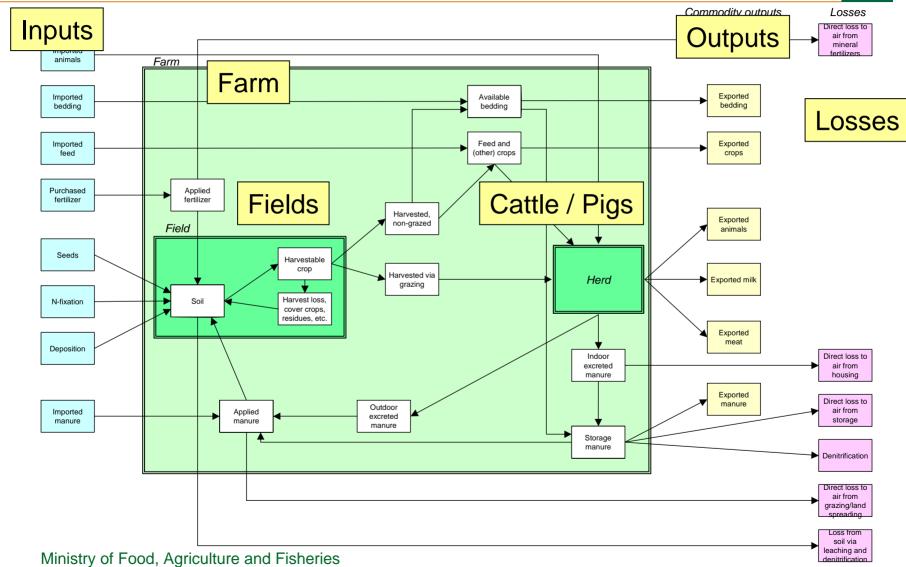
Losses: $L = S - \Delta$

Flows affecting farm N emissions

Scales of interest

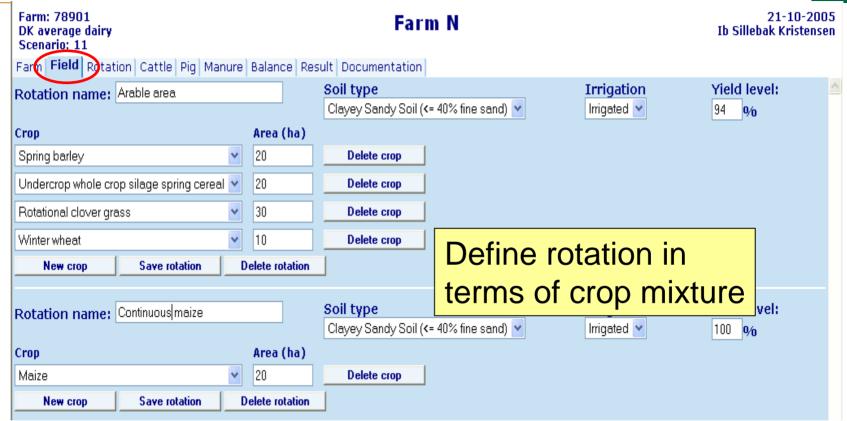
- Structural: Different farm types and components differ considerably in terms of N cycling and emissions.
- Spatial: Farms are components of landscapes and affect N flows at landscape level (in atmosphere and water). Spatial heterogeneity in soils and cropping pattern at field and farm scale will affect emissions.
- *Temporal*: N flows and emissions are affected by the weather and by the prehistory of the soils.
- *Management*: The flows can be affected by management in all the different spatial contexts.

- Static models: Focuses on the structural aspects of the farm (e.g.: Farm-N tool).
- *Dynamic models*: Focuses on structural and dynamic aspects of the farm (e.g.: FASSET and FarmGHG).
- Landscape: Focuses on spatial and dynamic aspects of farms and their interaction with other landscape components (e.g.: NitroScape).

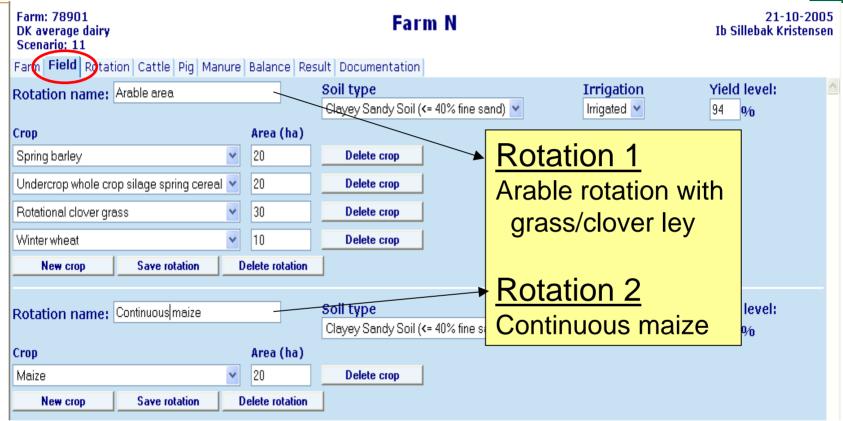

The Farm-N tool (available at www.farm-n.dk)

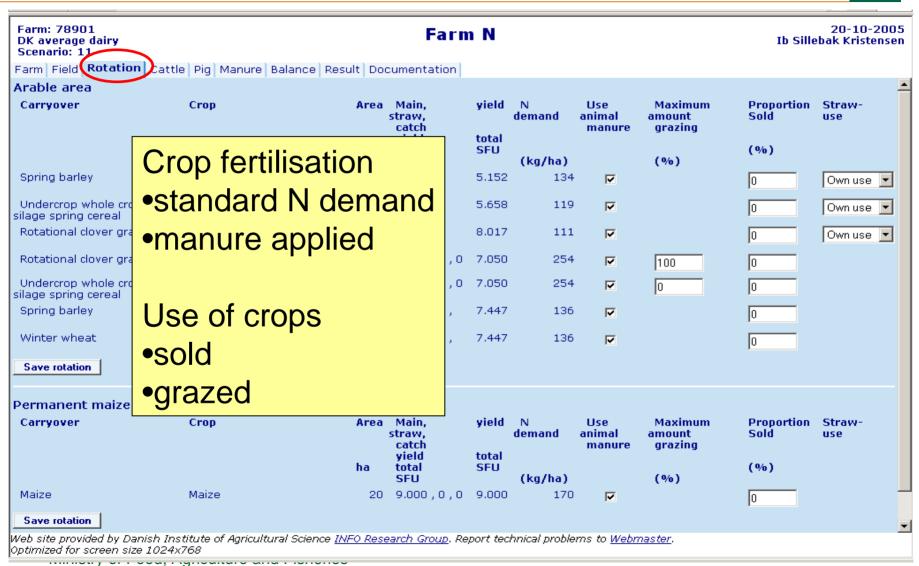
- A whole-farm model of N flows
- Focuses on the interactions between crop and livestock production
- Static model, results represent an average situation
- Deterministic; same input produces same output
- Underlying assumption: Nutrient quota used to regulate management

Nitrogen flow on farm



Farm: 78901 DK average dairy Scenario: 11	Farm N	18-10-200 Ib Sillebak Kristense	
Farm Field Rotation	Cattle Pig Manure Balance Result Documentation		
Farmer			^
Name	DK average dairy		
Address	Farming Systems		
Postal code and town	8830 Tjele		
Soil type Clayey Sandy Soil (<= 4	Irrigation Yield level Farm type (sandy soil) % af norm 0% fine sand) Rainfed 100 % Cattle		
Scenario Scenario 11 Bought manure Max. New New		Defaults: •soil type •irrigation •prehistory	


Field


Field

Crop rotation

Cattle

Farm: 78901 DK average dairy Scenario: 11	Farm N 18-10-20 Ib Sillebak Kristens						
Farm Field Rotation Cattle Plg Manure Balance Result Documentation							
Herd	Animal units (36: feeding days)	5 Maximum amount grazing	Production level E	fficiency	Housing type		
Holstein types - dairy	118	600 SFU per animal	7764 Kg milk	100 %	Cubical house - slatted floor Delete		
Holstein types - heifers	130	540 SFU per animal	700 g. growth/day	100 %	Mixed deep litter Delete		
Holstein types - young bulls	26	0 SFU per animal	1100 g. growth/day	100	Breed		
Save New	1				Sicca		
	_				Categories		
Herd requirements, produ Herd	Grazed	ure Energy Dry Matter demand demand	Nitrogen Milk Grov demand protein (kg	wth Ex	Numbers		
1 - Holstein types - dairy 2 - Holstein types - heifers 3 - Holstein types - young bull:	70.200,0 21	(SFU) (kg) (8.178,0 755.978,6 (8.790,0 295.366,5 (1.255,8 49.205,5	5.886,9 83	01,0	eeding regime		
Total for all animal groups	141.000,0 948	3.223,8 1.100.550,6	26.003,5 4.745,7 1.32	7,4 19	Production level		
				E	Efficiency		
				ŀ	Housing type		
					V		
Web site provided by Danish Institute of Agricultural Science <u>INFO Research Group</u> , Report technical problems to <u>Webmaster</u> , Optimized for screen size 1024x768							

Pigs

Farm: 78901 DK average dairy Scenario: 15			Fa	arm N		18-10-2005 Ib Sillebak Kristensen
Farm Field Rotati	on Cat le Pig Ma	nure Balance F	Result Documentati	on		
Sows Number of year sows 140 number New	Number of live piglets per sow 23,2 number	Weight at weaning 7.2 kg	Feed amount 1340 SFUpigs	Protein content 149,8 g/SFUpigs	Stable type - pregnant sows Single-housed, fully-slatted	Stable type - lacta sows Boxed, partially-sli
Piglets and Finis Type Piglets	shing pigs Produced animals 3200 number	Start weight		mal	n content Stable type g/SFUpigs Fully slatted flo	por Delet
Finishing pigs V	3151 number	30 kg	102 kg 20	01 SFUpigs 158,3	Categorie	
Save Herd requireme	nts, production a	and manure			Numbers Feeding	_
Herd 1 - Sows 2 - Finishing pigs 3 - Piglets	Energy d 187 633		n demand Growth (kg N) (kg N) 4.496,4 771,3 16.041,5 6.220,1 3.953,7 1.943,0	3.725,1 9.821,4 3	Productions 899,3 672,1 Housing	
Total for all anima	ol groups 971	.351,0	24.491,6 8.934,4	15.557,3 4.	779,7 10.777,5	

Intermediate calculations

Animals

- feed demand
- N excretion
- Housing & storage
 - addition of bedding
- Fields
 - optimum crop rotation
 - plant-available N required
 - optimised manure use
 - mineral fertiliser applied
 - crop production

Farm-N uses fixed N efficiencies in the animal production

Animal category	N efficiency (%)
Dairy cows	26
Heifers	15
Bulls	23
Sows with piglets	17
Piglets	49
Slaughter pigs	38

Farm N surplus = Import - Export

• Import (input)

- feed imported
- livestock imported
- mineral fertiliser and manure
- N fixation
- seed
- atmospheric deposition
- Export (output)
 - livestock products (meat, milk)
 - crop products (grain, straw, hay)
 - manure exported

Results

Farm: 78901 20-10-2005 Farm N Ib Sillebak Kristensen DK average dairy Scenario: 11 Farm | Field | Rotation | Cattle | Pig | Manure | Balance | Result | Documentation | Farm scale Input (kg N) Output (kg N) total total per ha per ha Mineral fertiliser 5,566,5 0,0 0.0 Cash crops 55,7 -> Manure bought 0.0 0.0 0.0 Piglets sold 0,0 -> Feed bought 11.162.0 Cattle meat 111.6 1.327,4 13,3 -> Straw bought Milk 0.0 0.0 -> -> 4.745.7 47,5 Pigs bought 0.0 0,0 -> 0.0 0,0 Manure sold Seed 7,3 1,1 111,7 728,3 Feed sold 3.150,0 Finishing pigs sold N fixation 31,5 0.0 0,0 Atmospheric deposition 15.0 1.500,0 -> Total input Total output 214.9 21.490.1 -> 6.801.3 68.0 Farm N-surplus: 14.688,8 kg N 146,9 kg N per ha 100,0 ha Area : Herd: 184,8 livestock units Distribution of N-surplus total per ha ka Nika Niperiha Ammonia lost, housing 1.355,2 13,6 Ammonia lost, storage 832,2 8,3 Denitrification, storage 112.0 1.1 2,2 Ammonia lost, grazing 215,9 Ammonia lost, spreading manure 995,4 10,0 Ammonia lost, spreading mineral fertiliser 167,0 1,7 Denitrification, soil 1.164,1 11,6 Soil pool change 5.505,6 55,1 N leaching 4.341,4 43,4

Distribution of estimated N surplus

- Ammonia volatilisation estimated from emission factors
- Denitrification (N_2+N_2O) in housing and manure storage estimated from emission factors
- Denitrification (N_2+N_2O) in soils estimated from emission factors (SimDen model)
- Soil N change estimated from a simple dynamic SOM model
- Nitrate leaching = farm N surplus (other losses + change in soil N).
- Nitrate leaching may alternatively be estimated from an empirical N leaching model (e.g.: N-LES).

Distribution of Farm gate N-surplus = 147 kg N/ha

Distribution of N-surplus

	· · · · · · · · · · · · · · · · · · ·			
		total	per ha	
		kg N	kg N per ha	
Аг	nmonia lost, housing	1.355,2	13,6	
Аг	nmonia lost, storage	832,2	8,3	
De	enitrification, storage	112,0	1,1	
Аг	nmonia lost, grazing	215,9	2,2	
Аг	nmonia lost, spreading manure	995,4	10,0	
Αr	nmonia lost, spreading mineral fertiliser	167,0	1,7	
Dε	enitrification, soil	1.164,1	11,6	
Sc	oil pool change	5,505,6	55,1	
N	leaching	4.341,4	43,4	

Lost of input

7%

4%

5%

7%

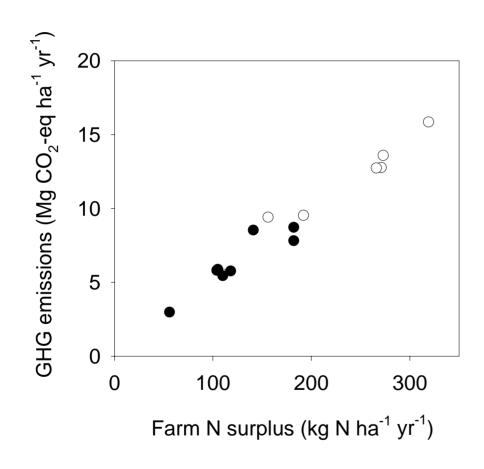
6%

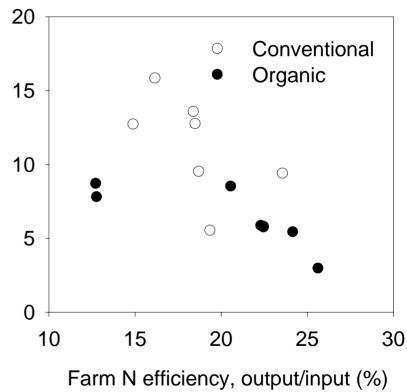
3%

4%

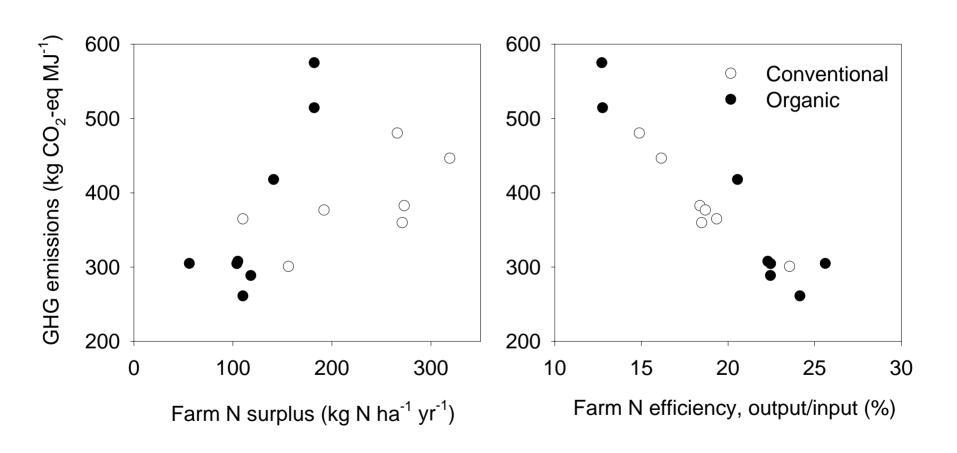

The FarmGHG farm model (www.agrsci.dk/jpm/jeo)

- A whole-farm model of N flows and greenhouse gas emissions
- Focuses on estimation of measures (management and technological) of reducing greenhouse gas emissions.
- Semi-dynamic model, uses monthly time steps, but results represent an average situation
- Deterministic
- A combination of emission factors and dynamic effects on N flows and emissions is used
- The model has been applied to European dairy farming systems (organic and conventional)


Farm N surplus increases with livestock density



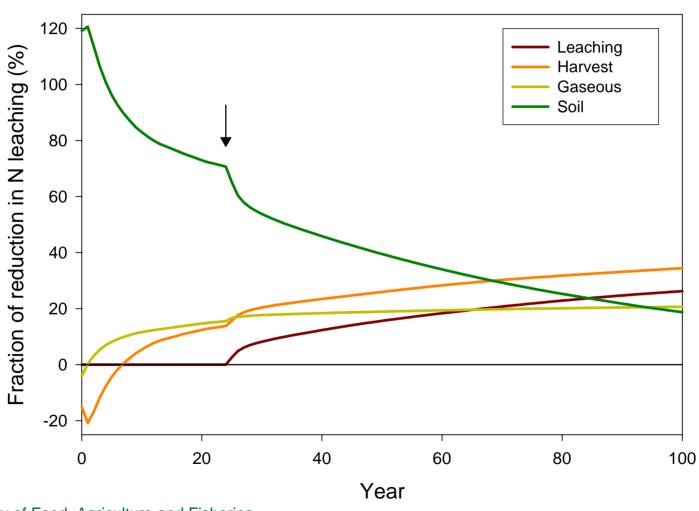
Emissions per area

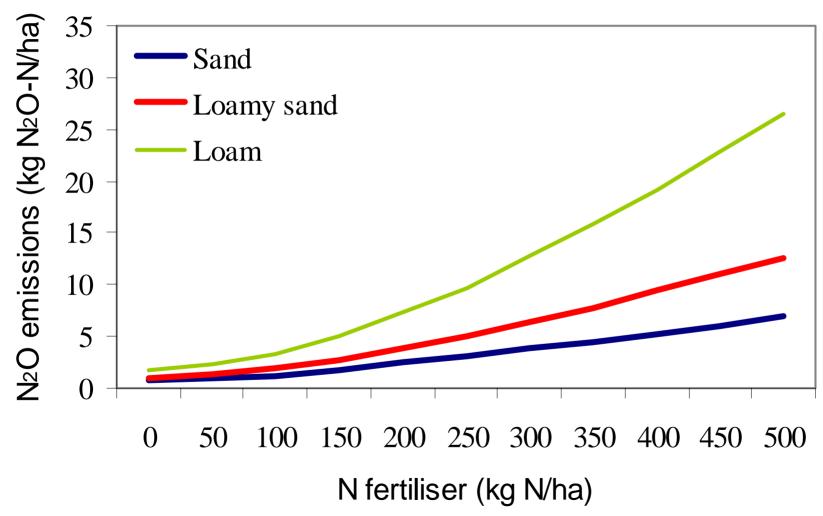


Emissions per unit of energy exported

The FASSET farm model (www.fasset.dk)

- A whole-farm model of C and N flows and farm production
- Focuses on estimation of farm management effects on C and N flows, in particular of emissions of reactive N species.
- Dynamic model, uses daily time steps, and results depend on actual soil and climatic conditions
- Deterministic
- The flows and emissions are mostly simulated through mechanistic modelling of the physical and biological systems involved.


Examples of management options to reduce N losses


- Change in feeding of cattle and pigs, e.g. reduced use of N-rich concentrates, addition of essential amino acids.
- Cover on slurry tanks
- Anaerobic digestion of slurry (biogas)
- Slurry injection
- Reduced fertiliser N rates
- Better timing of fertiliser and manure applications
- Growing of catch crops
- Reduced tillage

The fate of N-savings from catch crop changes over time

Simple or complex models?

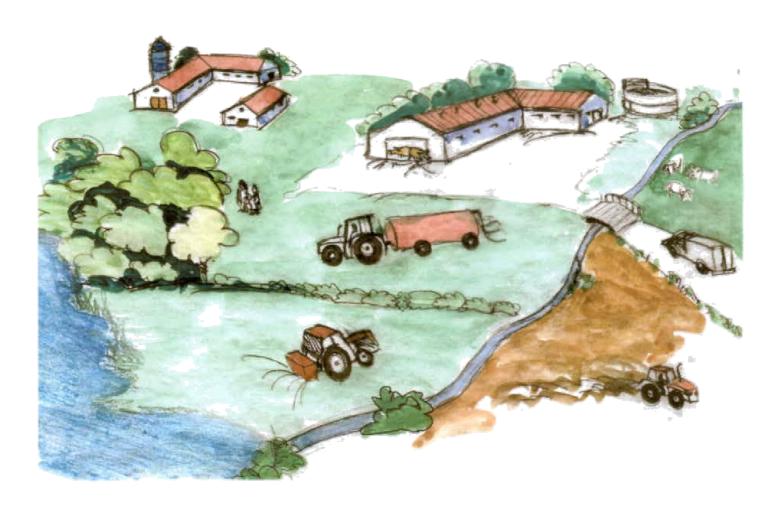
Simple models

- © few inputs, readily obtained
- © low parameter error
- ⇔ high model error
- Teflects average management

Complex models

- many inputs, readily obtained
- (2) high parameter error
- © low model error
- © can reflect wide range of management

- Prediction of management effects on farm N flows and emissions
 - dynamic models
 - reflect the underlying processes affected
- Prediction of farm N flows and emissions at landscape scale
 - simple (empirical and static) models
 - limited amount of good quality data available


Conclusions

- N losses from farming systems are particular large from livestock systems with low N-efficiencies in the livestock production
- Farm N flows and emissions are often best predicted using simple (empirical and static) models
- Farm N flows and emissions are often best understood using dynamic models, which represent both structural and temporal scales
- To properly represent the need for future targeted regulations of farm N emissions, farm models will need to consider interactions within the landscape

Thanks for your attention

